

Outlook for Today:

- Result: Create histograms and a few band-combinations for a huge AOI
 - Get to know GEE
 - Get a feeling for cloud processing and why its so powerful
 - See why band combinations are useful
 - Enjoy learning about GEE!

Image Processing & Analysis - WS 2021/22 - Christina Zorenböhmer

Today's topic: Band combinations

Knowing how to use them can be really useful! Let's first take a look at what bands are actually captured by some satellite sensors.

Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor)

Band	Resolution	Wavelength	Description
B1	30 m	0.433 to 0.453 μm	Coastal / Aerosol
B2	30 m	0.450 to 0.515 μm	Visible blue
В3	30 m	0.525 to 0.600 μm	Visible green
B4	30 m	0.630 to 0.680 μm	Visible red
B5	30 m	0.845 to 0.885 μm	Near-infrared
B6	30 m	1.56 to 1.66 μm	Short wavelength infrared
B7	60 m	2.10 to 2.30 μm	Short wavelength infrared
B8	15 m	0.50 to 0.68 μm	Panchromatic
В9	30 m	1.36 to 1.39 μm	Cirrus
B10	100 m	10.3 to 11.3 μm	Long wavelength infrared
B11	100 m	11.5 to 12.5 μm	Long wavelength infrared

Sentinel-2 MSI (Multispectral Imager)

Band	Resolution	Central Wavelength	Description
B1	60 m	443 nm	Ultra blue (Coastal and Aerosol)
B2	10 m	490 nm	Blue
B3	10 m	560 nm	Green
B4	10 m	665 nm	Red
B5	20 m	705 nm	Visible and Near Infrared (VNIR)
B6	20 m	740 nm	Visible and Near Infrared (VNIR)
B7	20 m	783 nm	Visible and Near Infrared (VNIR)
B8	10 m	842 nm	Visible and Near Infrared (VNIR)
B8a	20 m	865 nm	Visible and Near Infrared (VNIR)
B9	60 m	940 nm	Short Wave Infrared (SWIR)
B10	60 m	1375 nm	Short Wave Infrared (SWIR)
B11	20 m	1610 nm	Short Wave Infrared (SWIR)
B12	20 m	2190 nm	Short Wave Infrared (SWIR)

Some commonly used band combinations:

Natural Color. Used for visual interpretation.

The color infrared composite is used for vegetation analyses. In this case, plants reflect near infrared and green light, while absorbing red. Since they reflect more near infrared than green, plant-covered land appears deep red. Denser plant growth is darker red. This band combination is valuable for analysing plant health.

Portrays a landscape in false colors, but in a way that resembles the natural appearance. This combination is often used for geologic analyses (especially in desert landscapes since different surface soils appear in different colors), or agriculture, forestry, or fire management and post-fire analysis.

Getting Started with Google Earth Engine

For information signing up for GEE, see Blackboard > Information > Software and Data

	Platform	Datasets	Commercial	Timelapse	Case Studies	FAQ	Sign Up
ore detai	Overview						
	Code Editor		and a state of the				
	Explorer		R. 1				
	Documenta	tion					

The GEE Interface in plain words:

Lets take a quick look at the Datasets

Next to the search bar at the top, click on the drop-down menu and click on "View Data Catalog"

Google Earth Engine Search places and datasets			Q	•	
Scripts Docs Assets	New S	Script *	Get Lin	View Data Catalog	1
→ ee.FeatureCollection	1			Suggest a dataset	ľ
▶ ee.Filter					
> ee.Geometry					
✓ ee.Image					

■ In the new page, scroll down to "Imagery"

Let's "Explore Landsat"

Here we can see a bunch of information about the Landsat Collections and Missions

If we now click on "Landsat 8 Surface Reflectance" in Collection 2, we can inspect some details about this dataset, and we can see relevant information for the code we will write.

Earth En	ngine Data Ca	atalog					Q Search
Home \	View all datasets	Browse by tags	Landsat	MODIS	Sentinel	API Docs	
		USGS Lar	ndsat (B Leve Da Da Ea Ta	l 2, CC taset Availa 2013-04- taset Provice USGS rth Engine S ee.Imag gs cfmask lc08	Collection 2, Tier 1 ilability 24-11T00:00:00Z - 2021-11-04T00:00:00 vider e Snippet mageCollection("LANDSAT/LC08/C02/T1_L2") 2 sk cloud fmask global l8ar landsat lasrc lst reflectance sr usgs	Dataset ID
		Description	Bands In	nage Propert	ies Term	rms of Use	
	l	This dataset cont bands and 2 shor in calculation of t	tains atmosph rt-wave infrare the ST product	erically correc d (SWIR) banc s, as well as (ted surface re ls processed 1 A bands.	e reflectance and land surface temperature derived from the data pi ed to orthorectified surface reflectance, and one thermal infrared (Ti	roduced by the Landsat 8 OLI/TIRS sensors. These images contain 5 visible and near-infrared (VNIR) IR) band processed to orthorectified surface temperature. They also contain intermediate bands used
		Landsat 8 SR pro National Aeronau	ducts are crea itics and Space	ted with the L e Administrati	and Surface R on (NASA) Je	e Reflectance Code (LaSRC). All Collection 2 ST products are create Jet Propulsion Laboratory (JPL).	ed with a single-channel algorithm jointly created by the Rochester Institute of Technology (RIT) and
		Strips of collecte	d data are pac	kaged into ov	erlapping "sce	scenes" covering approximately 170km x 183km using a standardiz	zed reference grid.
		Some assets hav	e only SR data	, in which cas	e ST bands ar	are present but empty. For assets with both ST and SR bands, 'PRC	OCESSING_LEVEL' is set to 'L2SP'. For assets with only SR bands, 'PROCESSING_LEVEL' is set to 'L2SR'.
		Additional docum	nentation and u	isage exampl	es.		
		Data provider not	tes:				
		 Data produ Therefore, 	ucts must cont night time acq	ain both optic uisitions can	al and thermanot be process	mal data to be successfully processed to surface temperature, as A essed to surface temperature.	ASTER NDVI is required to temporally adjust the ASTER GED product to the target Landsat scene.

When we specify which bands to show, the Band Names are important. The naming convention may change from dataset to dataset, so it's always good to check!

Description	Bands	Image Prop	perties	Ter	ms of Use			
Resolution 30 meters								
Bands								
Name	Units		Min	Max	Scale	Offset	Wavelength	Description
SR_B1			1	65455	2.75e-05	-0.2	0.435-0.451 µm	Band 1 (ultra blue, coastal aerosol) surface reflectance
SR_B2	Band Na	ames	1	65455	2.75e-05	-0.2	0.452-0.512 µm	Band 2 (blue) surface reflectance
SR_B3			1	65455	2.75e-05	-0.2	0.533-0.590 µm	Band 3 (green) surface reflectance
SR_B4			1	65455	2.75e-05	-0.2	0.636-0.673 µm	Band 4 (red) surface reflectance
SR_B5			1	65455	2.75e-05	-0.2	0.851-0.879 µm	Band 5 (near infrared) surface reflectance
SR_B6			1	65455	2.75e-05	-0.2	1.566-1.651 µm	Band 6 (shortwave infrared 1) surface reflectance
SR_B7			1	65455	2.75e-05	-0.2	2.107-2.294 µm	Band 7 (shortwave infrared 2) surface reflectance
ST_B10	Kelvin		0	65535	0.00341802	149	10.60-11.19 µm	Band 10 surface temperature. If 'PROCESSING_LEVEL' is set to 'L2SR', this band is fully masked out.

The same goes for the Image Properties. Often we will want to use the image properties to filter a dataset (for example for cloud cover), so we need to make sure we are using the correct image property name.

Description Bands Image Propertie	Terms	of Use
Image Properties	_	
Name Property Names	Туре	Description
ALGORITHM_SOURCE_SURFACE_REFLECTANCE	STRING	Name and version of the surface reflectance algorithm.
ALGORITHM_SOURCE_SURFACE_TEMPERATURE	STRING	Name and version of the surface temperature algorithm.
CLOUD_COVER	DOUBLE	Percentage cloud cover (0-100), -1 = not calculated.
CLOUD_COVER_LAND	DOUBLE	Percentage cloud cover over land (0-100), -1 = not calculated.
COLLECTION_CATEGORY	STRING	Scene collection category, "T1" or "T2".
DATA_SOURCE_AIR_TEMPERATURE	STRING	Air temperature data source.
DATA_SOURCE_ELEVATION	STRING	Elevation data source.
DATA_SOURCE_OZONE	STRING	Ozone data source.
DATA_SOURCE_PRESSURE	STRING	Pressure data source.
DATA_SOURCE_REANALYSIS	STRING	Reanalysis data source.
DATA_SOURCE_TIRS_STRAY_LIGHT_CORRECTIO	N STRING	TIRS stray light correction data source.
DATA_SOURCE_WATER_VAPOR	STRING	Water vapor data source.
DATE_PRODUCT_GENERATED	DOUBLE	Timestamp of the date when the product was generated.

With this information we can already start to create our own code.

Switch back to the Code Editor Tab.

- 1. Create a Point of Interest anywhere in the world
- Use the Geometry Drawing Tools in the map to draw a point
- Don't go too close to the oceans

- As soon as you finish drawing it, notice the geometry appear in the Code Editor
- Rename it to 'poi' (simply click on the word 'geometry' to edit it)

- Now we can create a very large AOI, by adding a buffer of 1 million meters (1000 km)
- Add this code at the top of your script

With a radius of 1 million meters, we now have an AOI of about 3.1 million km²

2. Create Variables for Start and End Dates for the Search

3. Create a Variable for our ImageCollection and filter it to find fitting images

4. Print out some Information

Now we can click "Run" to see if everything is going well so far. If all is well, we will see a result in the Console.

- 5. Create Median Collection
- The .median() function calculates the median of all values at each pixel across the stack of all matching bands.

// 5. Create collection of median pixel values of all valid images
var median = myImageCollection.median();

6. Define Band Combinations

• We can prepare the selection of bands by defining them in a variable

Now we can test to see how the visualisation looks without any stretching

"Run"Looks a bit dark, doesn't it?

8. Create Histograms to View Min and Max Values

With the help of the histogram we can decide where to set the Min and Max values for our visualisations

"Run"

You can click on the 2 "Open in New Window" button to see the histogram in full size.

9. Set Visualisation for Min and Max Values and add the Stretched Results to the Map

With the help of the histogram we can now see which min and max values to define

- Click "Run"
- Use the Layers Menu in the Map to turn your layers on and off to see the others

10. Do the same for other band combinations

Go back to 8. and add two more histograms (you can copy and paste the first one) for these new band combinations:

```
// 8. Create Histograms
```

```
var histogramRGB = ui.Chart.image.histogram({
image: median.select(bandsRGB),
region: aoi,
scale: 4000,
minBucketWidth: 400,
maxPixels: 4000000
});
print(histogramRGB);
var histogramNIR = ui.Chart.image.histogram({
image: median.select(bandsNIR),
region: aoi,
scale: 4000,
minBucketWidth: 400,
maxPixels: 4000000
});
print(histogramNIR);
var histogramSWIR = ui.Chart.image.histogram({
image: median.select(bandsSWIR),
region: aoi,
scale: 4000,
minBucketWidth: 400,
maxPixels: 4000000
});
print(histogramSWIR);
```

"Run"

Use the histograms to set new visualisations for the NIR and SWIR visualisations

```
// 9. Add images to the map
Map.addLayer(bestImage, {bands: bandsRGB, min: 7200, max: 19200}, 'RGB');
Map.addLayer(bestImage, {bands: bandsNIR, min: 7200, max: 24000}, 'NIR');
Map.addLayer(bestImage, {bands: bandsSWIR, min: 7200, max: 27600}, 'SWIR');
```


- You can easily change this code for anywhere else in the world by <u>simply changing</u> <u>the point coordinates</u> at the very top and clicking "run" again!!
 - You may need to adjust the min and max values in the visualisation based on the histogram

Here: my "poi" is in the middle of Afghanistan

Here: my "poi" is in the middle of Japan, North and South Korea!

Here: my "poi" is in the middle of Australia!

Zoom in South of Baghdad

Complete Script

- Set an geometry Point called "poi" with the geometry tools!
- Adjust the min and max values for the layers (use the histograms to decide!)

```
Imports (1 entry) 📃
🕨 var poi: Point (39.41, 8.63) 🔯 🔯
// 1. create area of interest around point, with a radius of 1 million meters
var aoi = poi.buffer(1000000);
// 2. set start and end dates
var start = ee.Date('2019-01-01');
var end = ee.Date('2020-01-01');
// 3. Call and filter an image collection
var myImageCollection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterBounds(aoi)
.filterDate(start, end)
.filter('CLOUD_COVER < 15');</pre>
// 4. print out information about how many images were found to fit our criteria
var size = myImageCollection.size();
print('Number of images that fit the criteria: ', size);
// 5. Create collection of median pixel values of all valid images
var median = myImageCollection.median();
// 6. Define Band Combinations
var bandsRGB = ['SR_B4', 'SR_B3', 'SR_B2'];
var bandsNIR = ['SR_B5', 'SR_B4', 'SR_B3'];
var bandsSWIR = ['SR_B7', 'SR_B6', 'SR_B4'];
// 7. Test non-streched visualisation
Map.addLayer(median.clip(aoi), {bands: bandsRGB}, 'Not Stretched RGB');
// 8. Create Histograms
var histogramRGB = ui.Chart.image.histogram({
image: median.select(bandsRGB),
region: aoi,
scale: 4000,
minBucketWidth: 400,
maxPixels: 4000000
});
print(histogramRGB);
var histogramNIR = ui.Chart.image.histogram({
image: median.select(bandsNIR),
region: aoi,
scale: 4000,
minBucketWidth: 400,
maxPixels: 4000000
});
print(histogramNIR);
var histogramSWIR = ui.Chart.image.histogram({
image: median.select(bandsSWIR),
region: aoi,
scale: 4000,
minBucketWidth: 400,
maxPixels: 4000000
});
print(histogramSWIR);
// 9. Add images to the map
Map.addLayer(median.clip(aoi), {bands: bandsRGB, min: 7200, max: 20800}, 'RGB');
Map.addLayer(median.clip(aoi), {bands: bandsNIR, min: 7200, max: 24000}, 'NIR');
Map.addLayer(median.clip(aoi), {bands: bandsSWIR, min: 7200, max: 27600}, 'SWIR');
```